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Why bias in DA and short time
forecasts matter?

To mention a few reasons

* (Re) analyses are generated in the DA process.
Forecast bias estimations often rely on them.

* Origin of systematic errors in long-range
predictions can be tracked down to small
systematic errors at short forecast lead times.

* Attribution. Generally it is easier to isolate the
physical processes misrepresented at short lead

times.




Numerical Weather Prediction System

Deterministic

Data Assimilation

Either bias-blind or bias-aware schemes

E Interpolations

Model time integration

¢, 06,9, q, logPs, cloud condensate

/ Interpolations, couplings

Diagnostic variables

In particular surface variables: Pcpt, 2mT, surface winds, etc. ‘

\ / Interpolations (e.g. native grid to constant pressure)

Raw forecasts

http://www.emc.ncep.noaa.gov/index.php?
branch=GFS



Numerical Climate Prediction System

Weakly coupled

DA scheme for each climate model component

Either bias-blind or bias-aware schemes

& Interpolations

Coupled model time integration

Dynamical variables

/ Interpolations, couplings

Diagnostic surface variables

Pcpt, 2mT, surface winds etc.

\ / Interpolations

Raw forecasts

Ensembles can be formed by collecting runs previously initialized (lagged approach)

For forecast times of weeks and months into the future probabilistic forecasts are all that can be
attempted



Numerical Ensemble Prediction System

Ensemble-Deterministic

Hybrid data assimilation

Ensemble of analyses. Additive and multiplicative noise, stochastic perturbations

& Interpolations

Multiple model integrations + stochastic perturbations

¢, 06,9, q, logPs, cloud condensate

/ Interpolations, couplings

Ensemble diagnostic surface variables

Pcpt, 2mT, surface winds etc.

\ / Interpolations

Raw ensemble forecasts

Look so realistic that some people use them at face-value




Forecast bias in NWP systems: three
general ways to approach it

* Direct bias mitigation: Get the bias and remove it
from the forecast. Bias estimation is computed off-

line or on-line

* Account for model errors: Add missing sub-grid
variability to forecasts. Generally in combination
with initial errors in the ensembles

* Shadowing: Find orbit in the model attractor such
that its evolution maps back close to nature.
Challenge to find a transformation from orbits of the
forecast model to orbits in nature.



Numerical Stage

Approaches*

De-biasing: “get the bias and
remove it”

Representing errors:
“Compensate for the missing

Data assimilation

Post-DA initialization

Time integration

Diagnostic variables

Typical evaluation
measures

Bias in observations (Wu and
Derber 1998, Y. Zhu 2014)

Bias in model (Dee and DaSilva
1998, Dee 2005)

Vortex relocation (Liu,2010), Field
alignment (Hoffman et al 2005,
Ravela et al 2007 ), flux correction
(Ji et al 1998)

Flux correction, nudging (Saha 1992,
DelSole et al 2007, Danforth et al
2008)

Balance requirements (Klinker and
Sardeshmukh 1992), Parameter
estimation methods (KF, NN)

RMSE, AC, Bias=first moment SE

terms”

Background error covariance
inflation (Li et al 2009); State-space
augmentation (Baek et al 2006)

Ensemble generation and centering
(Toth and Kalnay, Buizza and
Molteni, Wang and Bishop), Vortex
relocation

Stochastic perturbations (Buizza
1999, Hou 2006)

Stochastic perturbations in coupled
systems

ROC, CRPSS, Talagrand diagram or
reliability diagram to detect bias.
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* Not comprehensive



Numerical Stage

Approaches*

Shadowing

Data assimilation

Post-DA Initialization

Time integration

Diagnostic variables

Typical evaluation
measures

Pseudo-Orbit (Smith 1996, Judd and Smith
2001), Mapping (Toth and Pefia 2006), State
space augmentation (Baek et al 2006), Pseudo
obs (Carrassi et al 2014)

Anomaly Initialization in numerical
climate prediction systems (Schneider et
al 1998, Kirtman et al, Magnussos et al
2012)

8
* Not comprehensive



Bias correction in DA schemes

* Bias in the observing system

— Derber and Wu 1998, Y. Zhu et al 2013: Adaptive
methods

— Model errors assumed negligible

e Bias in the model

— Dee and DaSilva, 1998, Dee 2005: Two steps
approach. First to compute bias; second to perform
bias removal and obtain analysis

— Assumption: There exists a subset of the observing
system which bias is negligible compared to forecast
bias

Operational DA systems generally contain both approaches



Dee and DaSilva bias correction

Analysis equation: x? = )_Kf + K[y" — H(i_‘f)],

K is the Kalman gain matrix. Function of Pf,R1

First Step: Compute the bias from previous cycle
a . 0O
b’ =b’ — K, [y’ — Hx' —b/)]
K, = P,,H'(HP/,HT + HPLHT +R)™!, P/, =aPL.
Second Step: Remove the bias

x?=(x' —b?) + K [y — H(x/ —b%)]
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Accounting for model errors in an
ensemble-based DA scheme

1. Covariance inflation

P/=M_P'M_,"+Q (Ideal KF)

P/ =ﬁi(xif—)7)(xif—x_f)T (EnKF)

P/ =(1+A)*P/ =P/ + AP/
- Q

* Qrepresents model

error

* EnKF lacks Q
 Compensates through

inflation of P
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Bias correction EDAS

Covariance inflation

— Li et al 2009. EnKF with inflation can outperform
variational DA bias correction approach in sparse data

regions

Analysis RMS error
80— (500hPa Height) -

P STV

51 Control run
25% inflation

42 w

s /\,\MJ‘\/\/ WWM/

36 V‘A AL st
33 /\MMW v

3
q{ES% 3FEE SFEB 7FEB 9FEB 11FEB! 3FEB1 SFEB1 7FEB1SFEB2 1FER23FEB25FEB27FER
TIME

Dee&daSilva

All schemes are better than the control
run, Dee&daSilva gives best results (but it is expensive)

Analysis RMS error
500hPa Height)

(
. /J\/‘/ \W/’
W
50 MV(\W

44
%EE% 3FEB SFEB IFEB 9FEB 11FEB1 3FEB1SFEB1 7FER1SFEB21FER23FEB25FEBZ7FER
NJE

Control run
25% inflation

Dee&daSilva

- Dee&daSilva makes the filter divergent
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Initialization: Two general approaches

Fidelity Mapping

* Makes corrections to the  Maps nature’s initial state
initial conditions to stay as into a state in the model
close as possible to nature climatology (attractor);

° Fu” ﬁeld initia“zation returns to nature'S attractor

* Flux correction at initial after integration.
time * Used in simplified models

« Field alignments * Anomaly initialization
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Initialization approaches

o5 b Systematic error Bias

1ca

* Magnusson et al 2012

Temperature
Temperature

Nature climate

Flux correction
< ||| initialisation

Anomaly initialisation 15 i i i i ,
0 20 40 60 80 100
Lead time (months)
Model climate wE Bias corrected ensemble mean Global
Fig. 1 Conceptual model of the forecast strategies 188 oo R ——

Fig. 5 Time-series of the global mean sea-surface temperature and
its systematic error. Fulllni (red), Ucorr (green) , UHcorr (blue),
Anolni (pink) and reanalysis (black). 12-month running mean applied
for the forecasts. The evaluation is based on 3 ensemble members

Model: ECMWEF IFS (v 36r1) coupled with NEMO ocean model V3.0

Temperature

Conclusions: 76
Best results: momentum flux correction approach o
Worst: anomaly initialization
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Empirical Correction Strategies

1) Nudging based on long term biases:

2) Relaxation:

3) Nudging based on tendency errors:

X = g(x) + €
tendency GCM error

€ = —bzas/‘l:R

€=(x,-x)/1,

il

From DelSole et al 2007

15



Empirical bias-correction

General Methdology and Idealized Studies
« Leith (1978)

 Faller and Lee (1975)

« Faller and Schemm (1977)

State-Independent Correction Improves Random Error
 Johansson and Saha (1989)

Achatz and Branstator (1999)

Yang and Anderson (2000)

Danforth, Kalnay, Miyoshi (2007)

State-independent Correction Does NOT Improve Random Error
« Saha (1992)

 DelSole and Hou (1999)

 DelSole, Zhao, Dirmeyer, Kirtman (2007)

From DelSole et al 2007 16



Summary

Nudging based on tendency error clearly outperforms
relaxation methods and nudging based on long-term biases.

Empirical correction reduces statistically significant biases in
the COLAvV3.2 and GFS temperature forecasts.

Wind biases were marginally corrected, but are small anyway.

Moisture biases could not be corrected significantly, but also
were not amplified.

Empirical correction had no significant impact on random
errors, or on the skill of monthly means.

Simple state-dependent corrections are not effective.

From DelSole et al 2007 17




Empirical bias correction in
operational settings

e State-of-the-art models are quite complex and
biases are relatively small, particularly at short
lead times for some variables

— E.g. at day 10, the SE of 500hPa forecasts is about 5%
of the total RMSE

* Tuning or re-tuning of parameters has been a
preferred approach. This is done constantly on
each new version of the prediction system.

e Short samples (e.g. a few seasons) are used to
identify bias. Longer samples are used to tune
coupled numerical prediction systems



Stochastic approaches

The idea is to compensate for the “missing”
terms, and, thus, increase the ensemble spread
(or diversify the membership)

e;(T)=¢,(0)+de,(0)+ f[Pj(ej,t) +dP.(e;,t)+ A;(e,,t)]dt

Initial perturbations
Remaining tendency component (different

Model Tendency physical parameterization or multi-model)

Stochastic Perturbation

Buizza et al 2005 The model needs' infor.ma-t.ion
about the sub-grid variability



Stochastic Total Tendency Perturbation
(Hou, Toth and Zhu, 2006)

NCEP operation — Feb. 2010

oX, .
Formulation: =Ti(Xi;f)+V_2Wf,jTj(Xj»f)
j=1,...,

N

Simplification: Use finite difference form for the stochastic term

Modify the model state every 6 hours:

X =X, y}:w ([(x,), - (X)), ]- 1), ~ (%), ]}

Where w is an evolving combination matrix, and vy is a rescaling factor.

Reference:

1. Hou and et al: 2008 AMS conference extended paper
2. Hou and et al: 2010 in review of Tellus 20
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Snap shot of NCEP GEFS changes

Northern Hemisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20130901 - 20131130

Northern Hemisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20090901 - 20091130
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Stochastic Total Tendency Perturbation (STTP)
was implemented in Feb. 2010
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Results using STTP on extended GEFS

RMSE(solid) and SPREAD(dash)

MERR(solid) and ABS. ERR(dash)
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Northern Hemisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20120102 — 20120331

—bxpl JUBUURUSEa OO
-
U
= " +++++++++++n+++++r++4‘++—+++++++++++-+
At
et
A
#r
AT
<
A[’
‘.l:"
F
¢
§
I
Al
17234567 801011121314151617 18192021 222524252627 2829 30 31 32

Forecast dava

Northern Hemisphere 500hPa Height

Ensemble Mean Error and Ensemble Abs. Error

Average For 20121101 - 20121231

—bxpl

t++*++$y++¥F#V*f+f+$++$ﬁ++++ﬁ+ﬁ+*++++$
g,
b
bt

R R
pppprErEEEEEET
e
A+t
+
+
o+t
-+
o+
ot

12345

5 7 8 01011121314151617 18192021 222324252627 2829 30 31 32
Forecast days

MERR(solid) and ABS. ERR(dash)

RMSE(solid) and SPREAD(dash)

4.5

4.5

35

2.5

Northern Hemisphere 850hPa Temp.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20121101 - 20121231
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Stoch

ECMWEF T850

CRPSS

astic perturbations

b) Tropics
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Diagnostic variables

An area of much development
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Surface variables

* Precipitation, 2mT, surface wind, etc.

* Ensemble approaches to deal with these
variables quite complex.
— Depend on surface fluxes that are difficult to measure

— At the boundary of two climate components with two
distinct time scales

— Local feedbacks, subgrid-scale heterogeneity

* Bias correction approaches are generally a
posteriori



Climate variables

Are not purely atmospheric but depend on other climate components

Ensemble MEAN Predict vs Diagnostic

T850mb

Ensemble Spread Predict vs Diagnostic
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Stochastic perturbations vs debiasing

Inclusion of model error schemes increases the
probabilistic skill score of ensemble forecasting
significantly.

They performs best in the free atmosphere

Multi-physics schemes increases skill at the surface. Best:
Combining multi-physics schemes with parameter and
stochastic perturbations

Skill benefits comparable to calibration and/or debiasing.
Debiasing improves reliability at the expense of resolution

The use of model-error schemes mostly improve the
reliability but at the surface there is a small but significant
improvement in the resolution component.

(Berner et al 2014)



Summary

* A great deal of effort has been done to
remove systematic errors a priori.

e Systematic error correction procedures are
applied on each step of the numerical
prediction system.

* New developments to represent model errors
address forecast bias of the full PDF.



Thanks



Continuos Rank Probability Score

Quantifies the distance between two statistical objects, which can be two
probability distributions or samples; or the distance between one point and a
distribution

(a) Forecast PDF and Observed (a) Forecast and Observed CDF
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dy’s ocean surface winds: 28 October 2012 Current model outputs look very realistic

miles per hour, yellow; >50mph, orange; . 96-h Forecast

Satellite Observation




